ORA System with VerifEye+ Technology

by Vance Thompson, MD

Contents

ORA System with VerifEye+ Technology 1

The Verion Image Guided System provides the game plan for surgery 2

LenSx Laser: Advancing cataract surgery precision 5

Centurion Vision System provides improved anterior chamber stability 6

Important product information 7

Intraoperative aberrometry with the ORA System with VerifEye+ Technology (Alcon, Fort Worth, Texas) has revolutionized my premium cataract surgery practice. I use it on all my toric, multifocal, and accommodating implant cases. I also use it to guide intraoperative astigmatic keratotomy (AK) or guide my opening of femtosecond laser-created AKs.

I’ve experienced an improvement in outcomes in my procedures using the ORA System with VerifEye Technology. What I love about ORA System is that it gives me the true refractive power of the eye in surgery when the eye is in its aphakic state. I still go into the operating room with all of my preoperative calculations, and then I perform the ORA System measurement intraoperatively to either substantiate my preoperative calculations or change my decision.

Because I have been involved in the research and development of the ORA System with VerifEye+ Technology I have witnessed its hardware and software advancements that have resulted in impressive accuracy, reproducibility, and measurement speed. I have developed a lot of confidence in it, and as a result, we have it on the microscopes in both of our ASC operating rooms. The device’s image capture unit connects to the bottom of the surgical microscope and employs Talbot-Moiré interferometry to measure the refractive power of the eye real time during surgery. When I am at the point in the operation where the patient is aphakic and it is time to choose the ideal implant, the ORA System constantly streaming refractive information provides me with the data; if the VerifEye Technology measurement differs from my preoperative calculations, indicating additional variables, this will influence my final decision.

VerifEye+ Technology is of great benefit in toric cases because it helps me choose the axis and magnitude of the toric implant and refine that axis intraoperatively. After the toric lens has been implanted, I use the pseudophakic VerifEye+ Technology measurement for adjusting the implant axis inside the eye. It tells me whether or not I need to rotate the lens to a different axis, so it...
The Verion Image Guided System provides the game plan for surgery

by V. Nicholas Batra, MD

If we think of cataract surgery in terms of a football analogy, the Verion Image Guided System (Alcon, Fort Worth, Texas) is the play call that is given by the coaches, and the ORA System (Alcon) is where we might make adjustments to the plan at the line of scrimmage to call an audible if we notice a change.

In half of my cases, we have a good game plan with the Verion System. We take all of the measurements and everything syncs up. In these cases, we may not do anything different with the ORA System. In the other 50% of cases, we will change the lens power with the ORA System. I am finding that I do this less than I did before I used the Verion System. It is easier for the surgeon to use the Verion System and ORA System technologies together than either one alone because they are quite complementary and synergistic.

The Verion System is a great tool for surgical planning because it provides the game plan. By measuring everything ahead of time, the surgeon has a good idea of the astigmatism correction that needs to be performed. Additionally, if the surgeon is planning to implant a toric lens, these measurements help with lens selection and with the axis of the astigmatism. In the Verion System planner is a comprehensive astigmatism management tool that takes this to the next level, providing the surgeon with an all-in-one "slider bar" tool that allows the surgeon to select his or her preferred balance of astigmatic correction for that case between the ocular surface.

Please refer to pages 7 and 8 for important product information about the Alcon products described in this supplement.

continued on page 4
Because I have been involved in the research and development of the ORA System with VerifEye+ Technology I have witnessed its hardware and software advancements that have resulted in impressive accuracy, reproducibility, and measurement speed.

improves the accuracy of my toric implants. Even if my preoperative calculations are accurate on the spherical power, it is the astigmatic power and axis due to variables such as incisional effect and posterior astigmatism that are taken into account with the ORA System. This gives me great peace of mind in my toric cases. When the toric implant is in the ideal axis, the ORA System will tell me “no rotation recommended” and give me the final predicted astigmatism, which is typically quite close to plano. This has greatly improved my toric outcomes.

It has also been helpful in post refractive surgery patients, where the calculations can be challenging. For example, when we have a flattened anterior cornea in a laser-corrected myope, our traditional methods of measuring corneal curvature aren’t as accurate as in a virgin cornea. This is why we all get more nervous when we have a post corneal refractive cataract surgery patient, and we want to get as close as possible on the refractive outcome in this patient population who has highly valued being able to do a lot without glasses. Because VerifEye+ Technology takes into account anterior and posterior corneal curvature, it is of great benefit in these cases. In my premium post corneal refractive cataract surgery cases, it is my goal to get them close enough so they do not need another corneal laser enhancement on an often thin cornea (from previous PRK or LASIK), or if they do need an enhancement, it will be a low correction. The ORA System has helped me to achieve this. The VerifEye Technology is now the most common reason I get referrals from other ophthalmologists for post corneal refractive cataract surgery cases.

The third category of patients in whom it is especially useful is premium implant patients, who are trying to hit a specific refractive error because their goal is spectacle independence. The optics of premium implants require hitting a specific refractive target for ultimate patient satisfaction. Having the VerifEye+ Technology there with me to help in the final implant power choice is of great help.

Using VerifEye Technology has greatly reduced our refractive enhancement rate. I like that it now has a dynamic reticle in it. Previously, I would have to stop looking through the microscope and look at the computer screen on the VerifEye Technology cart. Now, I can continue looking through the oculars of the microscope because the dynamic reticle is inside the oculars, and it provides streaming refractive data for alignment information while I am looking through the microscope. This has helped my comfort and efficiency during acquisition of the VerifEye+ Technology data.

VerifEye+ Technology works very well in conjunction with Verion System. What’s nice about the Verion System is that it allows us, prior to the VerifEye+ Technology measurement, to get closer to the target refraction than the manual techniques that we used before Verion System. We are finding that the adjustments that we need to make with VerifEye+ Technology after placement of the implant are less because we have the Verion System guidance.

It has been exciting to work with the VerifEye+ Technology device and see how it has evolved. Alcon has been very responsive in continuing to improve the technology, and the dynamic reticle is just one example of how the ORA System with VerifEye+ Technology is helping us to optimize our cataract refractive outcomes.

Dr. Thompson is associate professor of ophthalmology at the Sanford School of Medicine, University of South Dakota and is the founder of Vance Thompson Vision in Sioux Falls, S.D. He can be contacted at vance.thompson@vancethompsonvision.com.
and IOL plane. This way, the combined impact of all planned arcuate incisions, toric IOLs, and surgically induced astigmatism values can be calculated in a single plan.

When we program these measurements into the LenSx Laser (Alcon), the interface between the Verion System and the LenSx Laser works well and allows surgeons to adjust for torsional rotation. It also allows us to line up the treatment for the arcuate cuts and the incision quite accurately based on the preoperative plan, and I’ve found that to be very helpful. While most patients only have between 0 degrees and 5 degrees of rotation, on occasion, there are patients who have more than 5 degrees of rotation, and the Verion System is currently my preferred way to easily pick that up before performing a laser treatment.

Once we bring the treatment into the laser and we bring the patient into the operating room, I will use the ORA System and the Verion System together to fine-tune the placement of the lens. In other words, we have the game plan from the Verion System programmed into our ORA System. Then, we remove the cataract. I will use the ORA System and the Verion System together to do toric lenses. I turn on the Verion System and use the reference marker from it as my alignment aid. I measure the power of the lens implant and the power that I want to adjust it with the ORA System, and I implant the lens. I will dial it to where the Verion System says that the lens should go and double-check it with the ORA System, so they work synergistically.

I am finding that even though the exact degree axes may not line up between the ORA System and the Verion System, meaning that the ORA System might say 90 degrees and the Verion System might say 86 degrees, the actual placement in the eye turns out to be about identical, and that’s because of the torsional rotation. The use of these systems in combination helps surgeons customize the procedure for each patient so he or she achieves the best outcome.

Because the game plan with the Verion System is quite accurate, I don’t have to do as much adjustment for astigmatism management with the ORA System as I used to have to do before we had Verion System. We still use the ORA System quite extensively to change the lens power, but I am finding that by using the LenSx Laser and the Verion System together, the astigmatism correction is spot on most of the time, and I don’t need to do any enhancements for the astigmatism correction using the ORA System. That has been a big time saver for me.

Figure 3: In this case, the Verion System corrects for 11° of counterclockwise cyclotorsion and ensures the femtosecond arcuate cuts are placed at the correct axis.

Figure 4: This toric IOL case demonstrates a situation where both the surgeon’s preop plan (Verion System, green) and intraoperative aberrometry (ORA System with VerifEye+ Technology, red) confirm the same alignment axis, indicating no new information present to consider deviating from the plan.

Dr. Batra is in private practice in San Leandro, Calif. He can be contacted at drbatra@batravision.com.
LenSx Laser: Advancing cataract surgery precision

by Kerry Solomon, MD

In my experience, the LenSx Laser (Alcon, Fort Worth, Texas) makes cataract surgery more precise in a number of ways. First, by having high-definition OCT, we are able to place the laser energy exactly where we want it to be. By using the OCT, we are achieving exactly what we intended: 80% or 85% depth and our incisions in the exact form and shape that we want.

Similarly, with primary and secondary corneal incisions, as well as capsulotomies, we are able to image and precisely place the energy exactly where we want it. In the 4 years that LenSx Laser has been on the market, there have been numerous hardware and software upgrades that have allowed us to reduce the amount of energy needed.

The advance of the SoftFit Patient Interface has allowed us to improve the overall procedure. My current procedure times are between 20 and 24 seconds, on average. We have dramatically reduced our time, improved our precision, and improved our accuracy. Adding the Verion Image Guided System (Alcon) as part of the surgical plan in the office has further automated treatments with the LenSx Laser. It takes a digital picture of the eye, which registers the scleral vessel patterns and iris landmarks, and develops a surgical plan. We transfer that plan from the office to the laser, and using the Verion System and the registered preoperative image of the eye, we are accounting for cyclotorsion and cyclorotation of the eye.

Now, we are placing incisions exactly where we intend to place them, which results in improved visual outcomes because we are controlling for variables such as the location of the primary incision, the location of the secondary incision, and the location of the arcuate incisions. We can also standardize our incision placement with each and every case, leading to a more controlled surgically induced astigmatism.

The LenSx Laser is integrated very nicely with the Verion System. It creates the same size capsulotomy in every case. You can dial in exactly what size you want, and this adds another level of consistency. In the operating room, we use the Verion System to reorient the surgery so that everything is done in the exact same meridian. Finally, we add intraoperative aberrometry in the form of the ORA System that allows us to fine tune the placement of toric intraocular lenses in the eye. Having these systems integrated allows us to improve our visual outcomes, which benefits our patients.

All of this changes patient flow. While it adds time to both the office visit and the surgical procedure, it results in better outcomes at the end of the day, making that extra time worth it, in my opinion. In terms of the flow, patients get their preoperative planning done at the time of their cataract workup. That plan is delivered to the LenSx Laser for the laser portion of the procedure if the patient opted for that. First, we align the LenSx Laser with the Verion System to orient and properly align so that the surgical plan can be executed based on the plan developed in the office.

That plan is then transferred to the operating room, where we reorient the eye with the Verion System so everything is once again realigned. Then the cataract is removed in whatever fashion we choose to use. I currently use the Centurion Vision System (Alcon), and I combine that with the femtosecond laser, which presoftens the lens. This reduces the overall energy that I am delivering into the eye and also reduces the amount of fluid being used.

I then take an aphakic measurement with intraoperative aberrometry, which takes into account posterior corneal astigmatism and the total refractive power of the eye. I fine-tune the implant that I am going to use based on the spherical and cylindrical power. I use the Verion System to orient my toric lenses or to best center things in the case of multifocal lenses.

Finally, I will confirm everything with intraoperative aberrometry in the case of toric lenses and fine-tune the positioning until aberrometry tells me that I have the optimal lens position. Postoperatively, data can be entered into the Verion System or into the ORA System, and those data can be used to start optimizing your surgeon factors for IOL calculation formulas. All of that fits together with the end result of trying to improve outcomes for patients.

Dr. Solomon is in practice in Charleston, S.C. He can be contacted at kerrysolomon@me.com.

“In the 4 years that LenSx Laser has been on the market, there have been numerous hardware and software upgrades that have allowed us to reduce the amount of energy needed.”
Centurion Vision System provides improved anterior chamber stability

by Lawrence Woodard, MD

The Centurion Vision System (Alcon, Fort Worth, Texas) is a significant improvement over my previous Infiniti Vision System (Alcon) in a number of ways. The most glaring difference is the improved anterior chamber stability with the Centurion System. This is a result of Active Fluidics technology, a different approach to fluidics management. The Centurion System uses dynamic compression plates that actively compress and relax the BSS (Alcon) bag inside the machine to better control the delivery of fluid into the eye.

This allows for much better control of the volume of fluid and pressure in the anterior chamber compared to traditional gravity based fluidics systems. As there is much less anterior chamber volatility, the posterior capsule movement appears to be greatly reduced during the case. Therefore, safety is improved, and there is less chance of posterior capsule rupture. Due to this improved chamber stability, I have been able to increase my vacuum levels during the case, so I am able to vacuum more of the lens and use less ultrasound energy. This allows me to lower my CDE ratio, which relates to better outcomes and less corneal edema postoperatively. That has been a welcome surprise.

Additionally, the design of the balanced phaco tip has allowed me to use less phaco energy, which also helps to improve outcomes. This computer-designed, double-bend tip creates more excursion at the distal end of the tip while providing less movement of the proximal end of the tip near the incision. The result is that the surgeon can more efficiently emulsify a nuclear fragment with a lower torsional amplitude due to the increased displacement of the tip. Using this technology, I am able to further lower my ultrasound usage during the case.

Additionally, in patients who have very dense nuclei, the balanced phaco tip allows me to be more efficient at removing the dense nucleus than with the Kelman angled tip that I previously used or a straight tip. These dense cataract cases are the ones that are high risk for thermal damage at the incision and endothelial damage due to much higher ultrasound usage. The balanced tip lessens the chance that both of these events occur, which improves recovery time and clinical outcomes.

When performing femtosecond laser cases, the fact that the laser has already fragmented the nucleus allows me to maximize the features of the Centurion System to facilitate even more efficient lens fragment removal than traditional cataract surgery cases. Using higher vacuum levels in combination with the balanced tip when removing a laser fragmented cataract, my CDE energy ratios are even lower because I am able to aspirate more of the nucleus once it has been softened with the femtosecond laser. I am performing more procedures with either no ultrasound or very minimal ultrasound compared to traditional cataract cases.

The Centurion System is beneficial with an ever-growing number of complex cases. In my experience, the iris tends to move less and the chamber appears to remain stable. The Centurion System helps me perform safe, controlled procedures.

Another example of a complex case is a mature cataract causing phacomorphic glaucoma. Typically, patients with mature cataracts also have a very narrow anterior chamber angle. I recently had a patient with phacomorphic glaucoma who had a dense nucleus with a very shallow anterior chamber. I was able to do that case efficiently, and I used a lot less ultrasound energy than I would have used with a different machine. That’s magnified when you are doing a case with a very shallow anterior chamber because you are operating much closer to the cornea than you normally would, so minimizing ultrasound energy and fluid usage are even more important in those cases. I have a glaucoma specialist in my practice, so I’ve had many of these cases, and the Centurion System allows me to perform the procedure in a safe and effective manner. These types of patients potentially benefit the most from the system.

In conclusion, I feel the Centurion System represents a significant advancement in phacoemulsification technology because the various features, most notably Active Fluidics technology, allow more efficient lens removal in traditional, complex, and femtosecond laser cases.

Dr. Woodard is in private practice in Atlanta. He can be contacted at woodard@omniyeatlanta.com.

Please refer to pages 7 and 8 for important product information about the Alcon products described in this supplement.
Important product information

CENTURION® Vision System
Caution: Federal (USA) law restricts this device to sale by, or on the order of, a physician.

As part of a properly maintained surgical environment, it is recommended that a backup IOL Injector be made available in the event the AutoSert® IOL Injector Handpiece does not perform as expected.

Indication: The CENTURION® Vision system is indicated for emulsification, separation, irrigation, and aspiration of cataracts, residual cortical material and lens epithelial cells, vitreous aspiration and cutting associated with anterior vitrectomy, bipolar coagulation, and intraocular lens injection. The AutoSert® IOL Injector Handpiece is intended to deliver qualified AcrySof® intraocular lenses into the eye following cataract removal.

The AutoSert® IOL Injector Handpiece achieves the functionality of injection of intraocular lenses. The AutoSert® IOL Injector Handpiece is indicated for use with the AcrySof® lenses SN6OWF, SN6AD1, SN6AT3 through SN6AT9, as well as approved AcrySof® lenses that are specifically indicated for use with this inserter, as indicated in the approved labeling of those lenses.

Warnings: Appropriate use of CENTURION® Vision System parameters and accessories is important for successful procedures. Use of low vacuum limits, low flow rates, low bottle heights, high power settings, extended power usage, power usage during occlusion conditions (beeping tones), failure to sufficiently aspirate viscoelastic prior to using power, excessively tight incisions, and combinations of the above actions may result in significant temperature increases at incision site and inside the eye, and lead to severe thermal eye tissue damage.

Good clinical practice dictates the testing for adequate irrigation and aspiration flow prior to entering the eye. Ensure that tubings are not occluded or pinched during any phase of operation.

The consumables used in conjunction with ALCON® instrument products constitute a complete surgical system. Use of consumables and handpieces other than those manufactured by Alcon may affect system performance and create potential hazards.

AEs/complications: Inadvertent actuation of Prime or Tune while a handpiece is in the eye can create a hazardous condition that may result in patient injury. During any ultrasonic procedure, metal particles may result from inadvertent touching of the ultrasonic tip with a second instrument. Another potential source of metal particles resulting from any ultrasonic handpiece may be the result of ultrasonic energy causing micro abrasion of the ultrasonic tip.

Attention: Refer to the Directions for Use and Operator’s Manual for a complete listing of indications, warnings, cautions and notes.

LenSx® Laser
United States Federal Law restricts this device to sale and use by or on the order of a physician or licensed eyecare practitioner.

Indications
Cataract surgery indication
The LenSx® Laser is indicated for use in patients undergoing cataract surgery for removal of the crystalline lens. Intended uses in cataract surgery include anterior capsulotomy, phacofragmentation, and the creation of single-plane and multi-plane arc cuts/incisions in the cornea, each of which may be performed either individually or consecutively during the same procedure.

Corneal flap indication
The LenSx® Laser is indicated for use in the creation of a corneal flap in patients undergoing LASIK surgery or other treatment requiring initial lamellar resection of the cornea.

Restrictions
• Patients must be able to lie flat and motionless in a supine position.
• Patient must be able to understand and give an informed consent.
• Patients must be able to tolerate local or topical anesthesia.
• Patients with elevated IOP should use topical steroids only under close medical supervision.

Contraindications
Cataract surgery contraindications
• Corneal disease that precludes application of the cornea or transmission of laser light at 1030 nm wavelength
• Descemetocoele with impending corneal rupture
• Presence of blood or other material in the anterior chamber
• Poorly dilating pupil, such that the iris is not peripheral to the intended diameter for the capsulotomy
• Conditions that would cause inadequate clearance between the intended capsulotomy depth and the endothelium (applicable to capsulotomy only)
• Previous corneal incisions that might provide a potential space into which the gas produced by the procedure can escape
• Corneal thickness requirements that are beyond the range of the system
• Corneal opacity that would interfere with the laser beam
• Hypotony, glaucoma* or the presence of a corneal implant
• Residual, recurrent, active ocular or eyelid disease, including any corneal abnormality (for example, recurrent corneal erosion, severe basement membrane disease)
• History of lens or zonular instability
• Any contraindication to cataract or keratoplasty
• This device is not intended for use in pediatric surgery.

*Glaucoma is not a contraindication when these procedures are performed using the LenSx® Laser SoftFit™ Patient Interface Accessory.

Corneal flap contraindications
• Corneal lesions
• Corneal edema
• Hypotony
• Glaucoma
• Existing corneal implant
• Keratoconus
• This device is not intended for use in pediatric surgery.

Warnings
The LenSx® Laser System should only be operated by a physician trained in its use.

The LenSx® Laser delivery system employs one sterile disposable Patient Interface consisting of an application lens and suction ring. The Patient Interface is intended for single use only. The disposables used in conjunction with ALCON® instrument products constitute a complete surgical system. Use of disposables other than those manufactured by Alcon may affect system performance and create potential hazards.

The physician should base patient selection criteria on professional experience, published literature, and educational courses. Adult patients should be scheduled to undergo cataract extraction.

Precautions
• Do not use cell phones or pagers of any kind in the same room as the LenSx® Laser.
• Discard used Patient Interfaces as medical waste.
Complications

Cataract surgery AEs/complications
• Capsulotomy, phacofragmentation, or cut or incision
decentration
• Incomplete or interrupted
capsulotomy, fragmentation, or corneal incision procedure
• Capsular tear
• Corneal abrasion or defect
• Infection
• Bleeding
• Damage to intraocular structures
• Anterior chamber fluid leakage, anterior chamber collapse
• Elevated pressure to the eye

Corneal flap AEs/complications
• Corneal edema
• Corneal pain
• Epithelial in-growth
• Epithelial defect
• Infection
• Flap decentration
• Incomplete flap creation
• Flap tearing or incomplete lift-off
• Free cap

Attention
Refer to the LenSx Laser Operator’s Manual for a complete listing of in-
dications, warnings and precautions.

ORA™ SYSTEM
Caution: Federal (USA) law restricts this device to sale by, or on the order of,
a physician.

Intended use: The ORA™ System uses wavefront aberrometry data in the measurement and analysis of the refractive power of the eye (i.e., sphere, cylinder, and axis measurements) to support cataract surgical procedures.

Contraindications: The ORA™ System is contraindicated for patients:
• who have progressive retinal pathology such as diabetic retinopathy, macular degeneration, or any other pathology that the physician deems would interfere with patient fixation;
• who have corneal pathology such as Puchs’, EBMD, keratoconus, advanced pterygium impairing the cornea, or any other pathology that the physician deems would interfere with the measurement process;
• whose preoperative regimen includes residual viscous substances left on the corneal surface such as lidocaine gel or viscoelastics;
• with visually significant media opacity (such as prominent floaters or asteroid hyalosis) that will either limit or prohibit the measurement process; or
• who have received retro or peribulbar block or any other treatment that impairs their ability to visualize the fixation light.

In addition, utilization of iris hooks during an ORA™ System image capture is contraindicated because the use of iris hooks will yield inaccurate measurements.

Warnings and precautions:
• Significant central corneal irregularities resulting in higher order aberrations might yield inaccurate refractive measurements.
• Post refractive keratotomy eyes might yield inaccurate refractive measurement.
• The safety and effectiveness of using the data from the ORA™ System have not been established for determining treatments involving higher order aberrations of the eye such as coma and spherical aberrations.
• The ORA™ System is intended for use by qualified health personnel only.
• Improper use of this device may result in exposure to dangerous voltage or hazardous laser-like radiation exposure.
• Do not operate the ORA™ System in the presence of flammable anesthesics or volatile solvents such as alcohol or benzene, or in locations that present an explosion hazard.

Attention: Refer to the ORA™ System Operator’s Manual for a complete description of proper use and maintenance of the ORA™ System, as well as a complete list of contraindications, warnings, and precautions.

Verion® Image Guided System

Verion® Reference Unit and
Verion® Digital Marker
Caution: Federal (USA) law restricts this device to sale by, or on the order of, a physician.

Intended uses: The Verion® Reference Unit is a preoperative measurement device that captures and utilizes a high-resolution reference image of a patient’s eye. In addition, the Verion® Reference Unit provides preoperative surgical planning functions to assist the surgeon with planning cataract surgical procedures. The Verion® Reference Unit also supports the export of the reference image, preoperative measurement data, and surgical plans for use with the Verion® Digital Marker and other compatible devices through the use of a USB memory stick. The Verion® Digital Marker links to compatible surgical microscopes to display concurrently the reference and microscope images, allowing the surgeon to account for lateral and rotational eye movements. In addition, details from the Verion® Reference Unit surgical plan can be overlaid on a computer screen or the physician’s microscope view.

Contraindications: The following conditions may affect the accuracy of surgical plans prepared with the Verion® Reference Unit: a pseu-
dophakic eye, eye fixation problems, a non-intact cornea, or an irregular cornea. In addition, patients should refrain from wearing contact lenses during the reference measurement as this may interfere with the accuracy of the measurements. The following conditions may affect the proper functioning of the Verion® Digital Marker: changes in a patient’s eye between preoperative measurement and surgery, an irregular elliptic limbus (e.g., due to eye fixation during surgery, and bleeding or bloated conjunctiva due to anesthesia). In addition, the use of eye drops that constrict sclera vessels before or during surgery should be avoided.

Warnings: Only properly trained personnel should operate the Verion® Reference Unit and Verion® Digital Marker. Use only the provided medical power supplies and data communication cable. Power supplies for the Verion® Reference Unit and the Verion® Digital Marker must be uninterruptible. Do not use these devices in combina-
tion with an extension cord. Do not cover any of the component devices while turned on. The Verion® Reference Unit uses infrared light. Unless necessary, medical personnel and patients should avoid direct eye exposure to the emitted or reflected beam.

Precautions: To ensure the accuracy of Verion® Reference Unit measure-
ments, device calibration and the reference measurement should be conducted in dimmed ambient light conditions. Only use the Verion® Digital Marker in conjunction with compatible surgical microscopes.

Attention: Refer to the user manu-
als for the Verion® Reference Unit and the Verion® Digital Marker for a complete description of proper use and maintenance of these devices, as well as a complete list of contraindica-
tions, warnings, and precautions.